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Abstract

Multiple-point statistics are used in geostatistical simulation to improve forecasting of responses that are highly

dependent on the reproduction of complex features of the phenomenon. Often, complex features cannot be captured by

conventional two-point simulation methods, based on the variogram. Inference of multiple-point statistics requires a

training image that depicts the geological features of the geological setting being modelled. The proportions of facies in the

training image may not match the target statistics of the final model. This is a problem because taking multiple point

statistics from a training image also takes the univariate proportions, that is, the multiple point statistics contain all lower

order statistics. There is a need to scale multiple-point statistics to different target univariate proportions. In other cases,

locally varying facies proportions must be honoured, but a single training image is available. The multiple-point statistics

from the training image are scaled to the appropriate target univariate proportions of facies. An iterative scaling approach

based on the expression for scaling multiple-point statistics in a purely random case is proposed. The implementation is

illustrated through an example where it is shown that the proposed method lies between two extreme cases for a Boolean

simulation, namely, the change in size of the objects and the change in their number of occurrences. A second example is

presented to illustrate the potential use of this scaling procedure for nonstationary multiple-point geostatistical simulation.

r 2006 Published by Elsevier Ltd.

Keywords: Facies simulation; Stochastic modelling; Training images; Geostatistics
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Multiple-point statistics can be used for improved
geostatistical modelling of variables distributed in
space. The relationships between several points at a
time are estimated from training data and imposed
during the simulation process in order to achieve a
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numerical model that correctly represents the spatial
features that conventional simulation cannot cap-
ture.

Fig. 1 shows a familiar reference image where the
relationships between the different geological units
or facies cannot be correctly captured by conven-
tional simulation methods (Deutsch, 1992). Ex-
haustive images such as the one depicted here can be
used as an analogue to the phenomenon that is
being modelled; multiple-point statistics can be
65
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Fig. 1. An exhaustive image showing intrincate relationships of four facies in multiple-point patterns that cannot be easily captured by

conventional simulation techniques.

Fig. 2. A four-points pattern and all lower-order configurations

that are implicitly matched by honoring the four-point statistics:

three-points statistics in four configurations; two-points statistics

for the corresponding lag distances separating the centers of the

nodes (these represent indicator variogram values); and the one-

point statistics that corresponds to the histogram. Nodes are

represented by their surrounding squares for illustration.
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extracted by scanning the image and computing the
frequency with which facies arranged in specific
patterns occur.

The training information requires abundant data
located over a regular grid of points, in order to
have enough replicates of each particular multiple-
point event. This is often solved by utilizing a
training image (Guardiano and Srivastava, 1993;
Deutsch, 1992) or by using available pseudo-
regularly spaced production data, as is the case in
mining applications (Ortiz, 2003; Ortiz and
Deutsch, 2004; Ortiz and Emery, 2005).

Multiple-point geostatistical simulation can be
performed using any of the available methods. The
single normal equation simulation proposed by
Strebelle and Journel (2000) estimates the condi-
tional distribution at every location given a multi-
ple-point configuration by calculating the frequency
with which the indicator at the location being
simulated is one given that the multiple-point event
occurs in the training image (see also Strebelle,
2002). Alternatively, simulated annealing (Deutsch,
1992) can be used to match the multiple-point
frequencies extracted from a training image into a
simulated numerical model. Again, the multiple-
point statistics are read from the training image as
frequencies of particular events occurring. Other
methods such as neural networks also rely on the
use of a training image to extract and reproduce the
multiple-point statistics (Caers and Journel, 1998).

There is an implicit assumption of stationarity
required to export the multiple-point statistics from
a training image to the simulated model. A
stationarity assumption stricter than the usual
second order stationarity is required, since the use
Please cite this article as: Julián M. Ortiz, et al., Scaling multiple-po

Geosciences (2006), doi:10.1016/j.cageo.2006.06.009
of configurations of several points also locks all
lower order statistics. For instance, if four-point
configurations are matched during the multiple-
point simulation process, then all three-point and
two-point statistics whose configuration is included
in the four-point configuration originally used are
implicitly matched (Fig. 2). Most importantly, the
histogram (univariate proportions of facies or rock
types) is also locked when higher-order statistics are
honoured. Univariate proportions are of first order
importance in resource assessment.
int statistics to different univariate proportions, Computers &
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This paper addresses the issue of scaling multiple-
point statistics, which may be required in two
distinct cases: (1) a training image with different
proportions than the data, and (2) locally varying
proportions.

First, consistency problems may arise when the
training image does not have the same one-point
distribution as that inferred from the available site-
specific observations. Some kind of correction is
required to ensure unbiased proportions in the
output realization. Strebelle and Journel (2000)
proposed the use of a servo-system that corrects
the output mean from any bias caused by the mean
of the training image or by the truncation of the
multiple-point data events if inference is deemed
unreliable. Ortiz and Deutsch (2004) standardized
the overall mean when updating the proportions in
an indicator based approach to incorporate multi-
ple-point statistics to a continuous variable simula-
tion.

These problems occur frequently, since training
images are not readily available with the exact same
proportions of facies that are being modelled.
Direct use of the multiple-point statistics extracted
from the training image will distort the histogram of
the simulated realizations generating a bias in the
proportions. A basic requirement for the simulated
model to be accepted as a plausible representation
of the true phenomenon is that it honours a given
histogram. Scaling of multiple-point statistics is
then required to allow the use of the training image
in a consistent manner with the data and preserving
its character, hence generating acceptable numerical
models.

Another relevant use of a scaling procedure for
multiple-point statistics is to impose non-stationary
features, but preserving the character provided by
the training image. One could devise the use of a
single training image to model a field with locally
varying proportions of the facies.

Scaling multiple-point statistics to a given set of
univariate proportions of the facies could be done
by generating a new image with an object-based
model, if the conceptual model can be reasonably
represented by a Boolean algorithm. Alternatively,
dilution/erosion methods could be used to modify
the original training image to adjust the proportions
to the target ones (Serra, 1982). Local modification
of the proportions for application of any multiple-
point simulation method would require running the
dilution/erosion algorithm locally, which could be
inconvenient.
Please cite this article as: Julián M. Ortiz, et al., Scaling multiple-po

Geosciences (2006), doi:10.1016/j.cageo.2006.06.009
We present a methodology for scaling multiple-
point statistics to generate consistent results from
simulation methods that account for this informa-
tion and to consider non-stationary features during
the modeling process. The methodology is general
and could be adapted to be used with continuous
variables, as long as the data are coded as indicators
by defining classes through a set of thresholds. The
problem is presented in the case of a categorical
variable, which is where simulation accounting for
multiple-point statistics has seen a faster develop-
ment.
TED P
ROOF2. Problem setting

Consider a training image that depicts the spatial
arrangement of K categories or facies. The global
proportions with which these categories are present
in the training image are denoted: pk; k ¼ 1; . . . ;K.
The general appearance of the training image
deemed appropriate to model a given geological
setting, hence the modeler decides the training
image is to be used for inference of the multiple-
point statistics that a given simulation algorithm
will impose to a set of realizations.

The multiple-point statistics to be considered are
defined by a spatial arrangement of nodes and by
the combination of facies values in these nodes. If
we consider the case where an N-points statistic is
considered, then KN possible combinations are
available. Each of these combinations occurs in
the training image with a given frequency. In fact, as
soon as N or K become relatively large, many of the
KN combinations will not occur in the training
image.

Each one of the possible combinations is identi-
fied with an index that completely defines the facies
values within the N points, however the ordering to
identify the points in the pattern must be defined
prior to the calculation of the index of each
multiple-point event (Fig. 3). The index of each
multiple-point configuration is calculated as

j ¼ 1þ
XN

n¼1

ðin � 1ÞKn�1

where in is the code of the nth node of the pattern
that identifies its facies. The facies are denoted by
consecutive integers starting with code 1.

The frequency of each multiple-point event in the
training image is denoted: f j ; j ¼ 1; . . . ;KN . Know-
ing the indexing and the frequencies with which
int statistics to different univariate proportions, Computers &
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Fig. 3. A four-point configuration, the order for considering the nodes and codes of the facies. Three examples of calculation of the

multiple-points indexes are illustrated.
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each multiple-point configuration occurs, permits
calculation of the facies proportions pk; k ¼
1; . . . ;K . Denoting by pk;j; k ¼ 1; . . . ;K ; j ¼
1; . . . ;KN , the proportion of facies k in the multi-
ple-point arrangement identified with the index j,
the proportions of the facies in the training image
can be retrieved from the multiple-point statistics as
follows. Consider the multiple-point index of inter-
est is j. We can calculate the value of the nth node,
by taking:

iN ¼ int
j � 1

KN�1

� �
,

where int represents the integer part of the division.
Subsequently, the indexes of the n�1 remaining
nodes of the pattern can be calculated recursively
using the residual of the division (fractional part):

in ¼ int
frac j � 1=Kn

� �
Kn�1

� �
; n ¼ 1; . . . ;N � 1.

Knowing the facies values of the N nodes of each
multiple-point index and their frequencies, the
univariate proportions can be easily calculated.

Now, the simulated model must honor a set of
statistics inferred from a set of samples. For
instance, the available data may show that the
global declustered proportions of the facies in the
domain are: p

target
k ; k ¼ 1; . . . ;K , with pk not neces-

sarily equal to p
target
k for some k ¼ 1; . . . ;K.

The goal of this paper is to propose a methodol-
ogy to calculate the corrected frequencies of multi-
ple-point events that will honor the target
proportions, preserving the ‘‘character’’ of the
training image, that is, keeping the features that
Please cite this article as: Julián M. Ortiz, et al., Scaling multiple-po

Geosciences (2006), doi:10.1016/j.cageo.2006.06.009
TED P
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make it distinct. These corrected frequencies are
denoted: f �j ; j ¼ 1; . . . ;KN .

It should be mentioned that dimensionality
becomes quickly a problem when dealing with a
large number of categories and a pattern with many
points. The indexing proposed above does not
preclude the use of the scaling approach proposed.
The methodology could be applied in a different
context, for instance, when using the search tree
considered by Strebelle (2002).

3. A scaling approach for multiple-point statistics

To understand the concept of scaling multiple-
point statistics, the following example illustrates
possible outcomes from an increase in the propor-
tion of a facies in a binary case and where the scaled
models preserve the character of the original
training image. A field of 1000 by 1000 pixels is
populated with 10 by 10 pixels squares, where the
center of the squares are randomly located in the
field, that is they are generated through a Poisson
process (Fig. 4). There are enough squares to cover
20% of the domain, leaving the remaining 80% as
background. Scaling this training image so that the
proportion of squares goes up to 40% may generate
two equally valid outcomes: we can have more 10 by
10 pixels squares or have a smaller number of larger
squares, say 20 by 20 pixels squares. These
situations are of course extremes and since we do
not know the exact multiple-point statistics of the
variable and we borrow this information from a
training image that does not exactly match the
proportions, a scaling procedure that lays some-
where in between the two extremes presented above
int statistics to different univariate proportions, Computers &
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Fig. 4. Two possible upscaled models from the training image on the left. The top right map shows more squares of the same dimension as

in the reference image; the bottom right map shows larger squares. Both maps have a proportion of pixels belonging to squares of 0.40.
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can be used as a modelling decision to handle the
problem.

Dimensionality is always a problem when dealing
with multiple-point statistics since the combinator-
ial becomes very large as the number of points in the
multiple-point configuration N or the number of
facies K increase. For example, 10 facies can be
arranged on a 9 points pattern in 1 billion possible
combinations. Of course, this example is extreme,
but pattern size often increases in an exponential
fashion: 4, 9, 16, 25 points in 2D, or 8, 27, 64, 125
points in 3D. This problem may be partially solved
by proceeding pairwise, that is, separate the most
relevant facies and group all other facies together.
Then, freezing the most important facies already
simulated, one can simulate another relevant facies
against all remaining facies on a reduced domain,
and so on, until all facies have been individually
taken into account. There are many implementation
considerations, but the focus here is on scaling the
multiple-point statistics to be representative.

The proposed approach is based on how multiple-
point statistics change when the facies codes of the
points in the pattern are randomly distributed. In
this case, the frequency with which a multiple-point
event occurs can be calculated as the product of the
probabilities of occurrence (proportions) of each
facies values in its nodes. Since the facies values are
Please cite this article as: Julián M. Ortiz, et al., Scaling multiple-po

Geosciences (2006), doi:10.1016/j.cageo.2006.06.009
TED 
considered uncorrelated, it is straightforward to
scale the frequency of occurrence of multiple-point
statistics. The frequency of a multiple-point config-
uration can be calculated by

f j ¼
YK
k¼1

p
Npk;j

k .

Since pk;j is the proportion of facies k in class j,
N � pk;j is the number of occurrences of facies k in
class j. For example (Fig. 5), considering a case
where two facies are available and the probability of
facies 1 prevailing at a given location is 0.25, then
the probability of having a four-points configura-
tion where facies 1 prevails in two nodes and facies 2
prevails in the remaining nodes would be calculated
as:

f 13 ¼ 0:254�0:5 � 0:754�0:5 ¼ 0:03515625.

Scaling the random case is quite simple; multi-
plying the original frequency by a series product of
the desired frequency over the old frequency results
in a simple equation:

f �j ¼ f j

YK
k¼1

p
target
k

pk

 !Npk;j

.

The scaled multiple-point frequencies honour the
target univariate proportions:
int statistics to different univariate proportions, Computers &
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f �j ¼ f j

YK
k¼1

p
target
k

pk

 !Npk;j

¼ f j

QK
k¼1 p

target
k

� �Npk;jQK
k¼1 pk

� �Npk;j

¼ f j

f �j

f j

¼ f �j .

Following up on the previous example, we can see
UNCORREC

Please cite this article as: Julián M. Ortiz, et al., Scaling multiple-po
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Fig. 5. Example of four-points configuration with two facies to calcula

Fig. 6. Geometric interpretation of the different multiple-point confi

domain.
that a change in the global proportions of the facies
will change the probability of occurrence of the
multiple-point event depicted in Fig. 5. Since the
uncorrelated case is simple, we can easily calculate
this probability for the new global proportions.
Consider the case, the probability of facies 1
TED P
ROOF
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prevailing at a location goes up to 0.4, leaving a
probability of 0.6 for facies 2. Considering the same
four-points configuration, we can calculate its new
probability of occurrence:

f new
13 ¼ 0:44�0:5 � 0:64�0:5 ¼ 0:0576.

It can be checked that the expression provided for
scaling multiple-point statistics in the random case
provides the same result calculated above:

f �13 ¼ f 13

p
target
1

p1

� �Np1;13 p
target
2

p2

� �Np2;13

¼ 0:03515625
0:4

0:25

� �4�0:5
0:6

0:75

� �4�0:5

¼ 0:0576.

This expression is valid only in the case of a
multiple-point statistics from an uncorrelated vari-
able (pure nugget effect). As soon as the variable is
spatially correlated, multiple-point proportions
cannot be directly calculated. An iterative approach
is proposed next to calculate the multiple-point
UNCORREC

Please cite this article as: Julián M. Ortiz, et al., Scaling multiple-po
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Fig. 7. Multiple-point histogram for the scaled statistics and the two ex

size of the squares to 20 by 20. A logarithmic scale has been used for

between the frequencies for the extreme cases.
OOF

frequencies that honour the target proportions,
from the initial multiple-point frequencies inferred
from the training image.

The formula above overcorrects the multiple-
point frequencies. Convergence can be achieved by
iterating using the following modified expression:

f �j ¼ f j

YK
k¼1

p
target
k

pk

 !pk;j

:

Multiple-point frequencies for all indexes j ¼

1; . . . ;KN must be updated. The new global
proportions pk; k ¼ 1; . . . ;K are recalculated for
each iteration. This formula does not require a
large number of iterations, and usually, the desired
multiple-point frequencies can be obtained with a
nearly perfect match of the target proportions, with
less than 50 iterations, which takes only a few
seconds.
TED P
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4. Examples

First, to illustrate the use of the scaling approach,
the small example presented in Fig. 4 is expanded.
The multiple-point histogram for a two by two
points pattern is calculated. The frequency of
occurrence of all 16 multiple-point events is
computed and a histogram of the frequency with
which each indexed event occurs is plotted as a
summary. The 16 possible events can be easily
interpreted in terms of the geometry of the objects
(squares), as shown in Fig. 6.
UNCORREC
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Fig. 8. Reference training image. Black stripes are two node

Fig. 9. Two realizations that honor the original propo
The reference image (map on the left hand side of
Fig. 4) is used to calculate the multiple-point
frequencies in a 2 by 2 pixels pattern and these are
scaled to reach a global proportion of squares of
0.40. These scaled statistics are then compared with
the two extreme cases presented on the right hand
side of Fig. 4.

Fig. 7 shows the three multiple-point histograms
superimposed. It can be seen that the scaling using
the random approach provides statistics that lie in
between the two extreme cases. We can expect that
these scaled up statistics represent a case where
TED P
ROOF
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s wide and separated by 6 nodes in the north direction.

rtions, made considering a 4 by 4 nodes pattern.
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Fig. 10. Two realizations that honor the original proportions, made considering statistics extracted from a 2 by 2 (left) and a 3 by 3 nodes

pattern (right).

Fig. 11. Three realizations considering the statistics from a 3 by 3 nodes pattern and scaled proportion of 30% for the black facies and

70% for the white background.
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there are more squares in the domain, but these are
also slightly larger than the ones in the training
image. The relevant features of the reference image
are then captured in the statistics.

A second example has been designed to illustrate
the use of the scaling procedure proposed. A binary
two-dimensional training image has been created
with black horizontal stripes two-units thick in a
white background. The training image is shown in
Fig. 8. The original proportions are pblack ¼ 0.25
and pwhite ¼ 0.75.

Multiple-point statistics have been inferred from
the training image and unconditional realizations
have been computed for different proportions of
black (stripes) and white (background) facies. A
simulated annealing program to match the multiple-
point statistics was prepared. Different pattern sizes
imply control over different scales of the phenom-
enon. For example, Fig. 9 shows two realizations
UNCORREC
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Fig. 12. Three realizations with multiple-point statistics scaled to 50%

size: 2 by 2 (left), 3 by 3 (middle), and 4 by 4 (right).
OF

considering a 4 by 4 nodes pattern. Notice that with
this pattern size the general appearance of the
resulting models is close to the training image. If a
different pattern is considered, the long range
features may not be properly captured. Fig. 10
shows realizations made with different pattern sizes
to illustrate this effect.

Fig. 11 shows three realizations constructed using
the multiple-point statistics for a 3 by 3 nodes
pattern, scaled to match the following facies
proportions: 30% black and 70% white. These
proportions were then changed to 50% for the black
facies and 50% for the white background, and
realizations with statistics from 2 by 2, 3 by 3, and 4
by 4 nodes patterns considered. These results are
shown in Fig. 12.

The scaling procedure was used to scale up the
proportion of the black facies. The initial propor-
tions (25% black, 75% white) were changed and the
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multiple-point statistics were scaled. These were
then used to simulate realizations with the intent of
generating realizations that kept the essential
features of the training image, but honoring the
facies proportions imposed to the new models.

It can be seen from the realizations displayed
above that, depending on the pattern size, two
situations can arise: the stripes may become wider if
the pattern is small enough not to capture its entire
width, or the stripes may become more abundant if
the pattern is big enough to capture the relation-
ships between the width of the black facies objects
and the background, as is the case when 3 by 3 or 4
by 4 patterns are used.
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5. Conclusion

Scaling multiple-point statistics can improve the
current use of multiple-point geostatistical simula-
tion techniques by allowing locally varying propor-
tions of facies to be reproduced still honoring the
relationships captured by multiple-point statistics.
Another important use of a multiple-point scaling
technique is the use of a representative training
image that does not exactly match the target
simulation proportions.

An iterative approach to scale multiple-point
statistics was developed based on the way that
multiple-point statistics change for a purely random
field. This approach can be shown to provide
reasonable values of the statistics that lie in between
two extreme cases that are easy to show in the case
of objects: an increase in the number of objects or
an increase in the size of the objects.

The scaling procedure has the potential of being
incorporated in a nonstationary simulation algo-
rithm that honors the features provided by a
training image, through the local updating of
multiple-point statistics.
Please cite this article as: Julián M. Ortiz, et al., Scaling multiple-po
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